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Reaction-diffusion front in a system with strong quenched disorder
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Using the Sinai model, we study the effect imposed by strong quenched disorder on the dynamic properties
of the reaction front formed iR+ B— C reaction-diffusion systems with initially separated reactants. We
confirm that the general scaling ansatz is valid also for disordered systems and find that a single characteristic
length controls the asymptotic properties of the entire system. We compare our results with those obtained for
different types of disorder as well as with results derived for a translationally invariant space.
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PACS numbds): 05.40:+j, 05.60+w, 82.20—w

[. INTRODUCTION with 0< < 3 and 3= a+ 3. Although it was later suggested
[13,14 that the simple power-law dependence in E2)

It is by now well established that kinetics of diffusion- should be modified, for space dimensiahs 2, by logarith-
limited reactions in random and/or confined geometries isnic factors, the exponent remains the basic quantity de-
qualitatively different from that observed in a homogeneousscribing the reaction front at long times. Fde2 it was
three-dimensional spa¢é]. The singular properties of such found thata=1/6 if bothA’s andB’s are mobilg 15,16 and
systems arise most often from the absence of a mechanisa=0 if one of the diffusion constants vanishgis,18§. In
that would enable thorougfiocal) mixing of the reactants. one-dimensional systems the properties of the reaction front
There can be many physical reasons for inefficiency of theurned out to be dominated by fluctuations tending to in-
mixing, e.g., the absence of convective stirring in or on solidcrease its width, and most researchers agree that because of
viscous or porous med[d], concentration fluctuations in the them « takes on a value 1/f13-16,19,2Q
initial condition in homogeneous low-dimensional spaces The influence of quenched local disorder on the reaction
[2-5], or anomalous transport properties in disordered mediiterface was recently studied by Arayj], who considered
[1,6—9, but its most significant consequence is that the locatandom walks on al-dimensional lattice d=1,2,3). The
reaction rate is not proportional to the product of the meamuenched disorder was modeled by assigning to each lattice
local concentrations of the reactants, which renders the consite j a random disorder variable<0r;<1 taken from a
monly used mean-field approximation generally inappropripower-law distributiorp(r;)=v7}~*, with disorder strength
ate for such systems. 0<»<1 fixed for the whole lattice; the sét;} modifies the

There are many examples of chemical and biologicajump rates of the random walkers by requiring that the mean
diffusion-controlled reactiqns as well as many ‘_‘nonche.mi—time spent by them at sitg before leaving it for one of its
cal” processes resembling them, e.g, exciton-excitonnearest neighbors is proportional torl/ That study con-
defect-defect, soliton-antisoliton and electron-hole recombifimed the validity of Eqs(1) and (2) with = v/(1+37)
nations. In many cases the reactants are initially separatggy =1 anda= /6 for d=2 andg related toa through
and as time goes on, owing to diffusion, they start to mix and
react. However, the theoretical and the experimental research B=a+1-1/M,, 3
in this field have concentrated mainly on translationally in-
variant space$10-21], a condition that in reality is often where[6]

violated.
The asymptotic properties of thie+ B— C reaction front 4 (1+v)/v, d<2 4
in homogeneous media attracted much interest in the past Wl 2ly, d=2 @

decade. It was found that ii’'s and B’s initially occupy
opposite sides of the=0 plane, the mean local reaction rate is the anomalous diffusion exponent related to the scaling
R(x,t) asymptotically assumes, at locatigrand timet, the  properties of the mean-square displacement of noninteracting
scaling form[11,12 particles diffusing in this systerx?)~t?/w,
In this paper we investigate the properties of reaction
fronts under the so-called Sinai disord&t2], which has
' @) been suggested as being relevant to various physical phe-
nomena, e.g., dynamics of dislocations in doped crystals,
wherex;(t)«t? is the point at whiciR attains its maximal slow dynamics of random-field magné®3], 1/f noise[24],
value and the widthv and height of the reaction front take transport in amorphous or porous med®6], and charge
on simple forms separation in photosynthetic systef2§]. In the Sinai model
one considers a one-dimensional lattice in which to each of
w(t)=t® —h(t)«t #, (2 its sites a local bias field-1<E;<1 is assigned. The set

X—X¢(t)

R(X-t):h(t)SR(W
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{E;} consists of independent random variables drawn from a di(t) dy(x?
given probability distributiorp(E). The two jump probabili- R(t)= TR T 9

ties at sitej, PJ-+ , that a random walker will hop from to
j+1,andP; =1-P;" that it will jump toj—1, are related Taking into account Eq(7), we thus find that
to E; by
Int
_ 2 i
sz%(lJrEj), P; =1(1-E). (5) [(t)xIn“t, R(t)e« - (10

The motion of a random walker in such a medium corre- Assuming the validity of the scaling ansatfl),
sponds to diffusion in the presence of a potential field R(t)=SR(x,t)dx should be proportional to the product of
j the width and height of the reaction front. Using EtQ), we

_ thus conclude that
Vi= > In(P{/Py), (6)

K= min

Int
o , - : L w(t)h(t)=R(t)o —. (11)
where j i IS the first node of a finite latticéfor infinite t

systems this definition requires suitable rescaling to avoid ) ) . )
divergent sumis This potential, being a sum of random vari- The width of the reaction front_ls usually defined as the
ables, can be regarded as performing a random walk itself€cond moment of the local reaction ratd]
Sinai [22] proved rigorously that if(ln(Pr/Pj‘))=0 (which -
means that there is no global bias in the systemd if X2R(x,t)dx
0<(In*(P}"/P"))<, then the mean-square displacement of WA(t)= -
a random walker grows extremely slowly °°

R(x,t)dx

— o0

: (12

(x?(t))=In“t. (7)

. . . . which is consistent with the scaling ans see Ref[27
This remarkable result is caused by stretches of bias with thg) thorough discussion of this %opicﬁ%i(s quantigy ?s

same direction that tend to confine the particles inside poten;, ,nded from above by the rms displacement of a noninter-

tial weIIs.. . . . . acting random walker, i.e., by the quantity expected to be the
The aim of our study is to examine the impact of this YP€ neasure of the width of the interfacial region betwe€n

of quer_mhed local dlsqrder on the asymptotic, long-timeé, 4 Bs in the absence of reaction. Indeed, comparing two
properties of the reaction front formed in the+B—C

ton-diffusi ¢ ith initiall ted tant similar systems, one with and the other without a reaction,
reaction-diitusion system with iniially separated reactants, o .o see that the reaction can only decrease the width of
In addition to the Sinai type of disorder, we will assume th

- ) , . ) he interfacial layer. This stems from the fact that the further
the initial concentrations oA’s andB’s are the same, their

. . i d h t local b bl a particle diffuses into the region initially occupied by the
Jumping rates depend on the same set of local bias variableg,ixe species, the greater probability that it meets a particle

{E;}, and that upon collision of unlike particles a reaction is ¢ 1o “opposite” type and reacts. Such a decrease in the

certain. to occur. \_Ne-shall focus our attention on averages;qih of the interface due to a reaction was observed in
over disorder realizationsc(t), w(t), h(t), andR(x,t). In homogeneous media, whesewas found to be less thanin
particular, we confirm the validity of the general scaling an-ihe study of disordered system by Araj, and in a one-

satz(1) with w(t)=In’, h(t)=(tInt) %, and the total reaction  ginensional reaction-diffusion system withwyeflights [10].
rate R(t)= [ R(x,t)dxxInt/t. The Sinai disorder turns out to We thus arrive at a general inequality

be so strong that the reaction has practically no impact on the
interface and the asymptotic properties of the local reaction w(t)< \/(77} (13)
rate and concentration profiles Afs andB’s are governed

by a single characteristic length scale<x2(t) =In? both  which, due to Eq(7), in the case of Sinai systems asymp-
inside and outside the reaction zone. totically takes on a form

Il. ANALYSIS w(t)=<Coln?t, (14)

Since we assume that the mechanical propertied’'sf whereCy,>0 is a constant.
andB’s are the same and the initial condition is symmetric ~ Since we assume that upon collision of unlike particles a
with respect tax=0, the mean position of the reaction front reaction is certain to occur, in our model particksand B

center does not change in time remain separatefbr all times The reaction front in such a
system is conveniently analyzed with a help of two quantities
Xs(t)=0. (8) [21]: the distance between the closest partickesand B,

I og(t), and the location of the midpoiritcenter of mass’)
The mean total reaction rafe(t) is equal todI(t)/dt,  between these particl@s(t). Whenever there is a reaction in
wherel (t) is the mean cumulative number of reactions thatthe systeml,g=0 and its location is given bg. These two
have occurred by time. This in turn is proportional to the quantities describe properties ofparticular realization of
typical distance traveled by particles during tirhei.e., to  the system and should be carefully distinguished from the
\/<x2). Thus, asymptotically, guantities employed in the scaling anséty, the latter rep-
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resenting averages over the eneresembleof different bias
fields {E;} and different thermal histories of diffusing par-

ticles.
To find the lower bound fow(t) let us for a moment

assume that we monitor only those reactions that occur im
mediately after a previous reaction happened at the origin o

the systemx=0. Letw* (t) denote the width of the reaction
front computed for such reactions and I&g(t) denote the
closestA-B distance calculated just after a p&¥B has re-
acted atx=0. If a reaction has just occurred a0, the
next collision of A andB will most likely take place some-
where between the current locations of the rightmdstnd
leftmost B particles. Thereforew* (t)oc(Ixg(t)). However,

if we choose to monitor all reactions, we shall find that
hardly ever do they follow a reaction preciselyxat 0 sim-

ply because the reaction front is relatively broad. The loca-

tion of the midpointm(t) fluctuates around its mean value 0
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and this random wandering can only increase the width of

the reaction front as compared to our reference system whe
a reaction is taken into account only after a p&iB collides
atx=0. Therefore we expect that(t)=w"* (t). Notice now
that (Ixg(t) ) (lya(t)), Wherely,, is @ quantity extensively
studied in the so-called trapping problg¢28,29: A perfect
immobile trap is sitting ak=0 and a swarm of diffusing
particles, initially uniformly, occupies the whole system. The
length (1 (1))
the trap and the closest particle at titnand, following our
analysis, satisfiesw(t)=w* (t)=(Iag(t))<(lya(t)) and
therefore constitutes the lower bound fe(t),

W(t)=C(lyadt)), (19

re FIG. 1. (a) Sinai potentialV(x) for a typical realization of the
bias field {E(x)}; (b) the corresponding concentration profiles
ca(x,t) andcg(x,t) of A and B, respectively, at=10% (c) the
same as irib) but fort=10’". The vertical dashed lines represent the
midpointm(t) separatingA from B; m(10°) =32 andm(107)=43.
The distances between the closasandB arel,g5(10°)=131 and

| ap(10")=152.

is defined as the average distance between

type do not interact among themselves. When two unlike
particles collide, they react and are replaced I6y. #articles
C, or the reaction products, are immobile, chemically inert,
and do not interact in any way with's andB’s. There is no
exclusion principle. Taking into account large fluctuations
and slow convergence of the Sinai model to the long-time

with C;>0 being another constant. The properties oflimit, we averaged the results of our simulations over
(lya(t)) were already studied for several models, includingN =13 000 configurations of the bias fi]&;} and for maxi-

homogeneous systeni29-31], the Sinai model[32], and
the random waiting time disorddi32]. It was rigorously
proven[29] that in the absence of disordéry,{t))et'*,
which is in accordance with E@15). The(ly,4t)) distance
in the Sinai model was found to read

(lyagd 1)) Int.
It now follows from Eqgs.(11)—(16) that asymptotically
17

which, together with Eq(10), constitutes the main result of
this section.

(16)

w(t)e<In?t, h(t)e(tint) 3,

IIl. NUMERICAL SIMULATIONS

mal timest .= 10" steps per particle.

In Fig. 1(a) we present a plot of the Sinai potentié) for
a typical realization of the Ilocal bias field
{E(x)},x=—400, ...,400. The corresponding concentra-
tions of particlesA and B at timest=10° andt=10" are
depicted in Figs. ) and Xc), respectively. In this particular
case particlesA(B) were found to the left(right) of
m(t) =32 for t=10° and m(t) =43 for t=10’, and the dis-
tance between the closesA and B was equal to
I ap(10°) =131 andl ,5(10") = 152, respectively. We can see
in these figures the main properties of the Sinai model. Most
of the particles are being captured at the bottom of potential
wells, with very small probability to get out of them, a phe-
nomenon leading to the extremely slow transport through
such a medium. As time goes on, the particles eventually
manage to escape from shallow wells and are getting

To support our conjecture we have performed extensivetrapped” by a few particularly deep potential minima that
numerical simulations. We used a one-dimensional lattic§lominate the long-time properties of the sysfgh29]. Con-

with L =801 sites, initially putting particleA (andB) to the
left (right) of its center with concentratioa,=b,=1.0. For

simplicity we chose as the distribution of the local bias vari-

ablesEj ,

p(Ej)=%[5(Ej—E)+5(Ej+E)]. E=3/4. (18
This choice corresponds to a binomial distribution

Prob(PJ-+ =7/8)= Prob(P]-+ =1/8)=1/2. Particles of the same

sequently, very few reactions are being recorded during a
single simulationon average we observed only 48 reactions
per a single run of 10steps3. It is also clear that the behavior
of the Sinai system igery sensitive to the particular realiza-
tion of the local field{E;}, and the results of simulations are
very “noisy.” Therefore, a large number of runs is required
before reasonably good averages can be obtained.
Because of the extremely slow reaction rate, direct verifi-
cation of the scaling ansaf) is practically impossible. In-
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FIG. 2. I(0t)/[C,+In(Int)] as a function of timet, with

Cim—062 FIG. 4. Concentrations, (circles andcg (squaresof A andB,
1= — U, .

respectively, as functions of the scaling variaklén’t for t=10°

. mpty symbolsandt= 10’ (filled symbols.
stead, we have checked whether the cumulative number é? Py sy 5 ( Y 3

reactions that have occurred ak by time t,
I(x,t)=[HR(x,7)d7, takes on the scaling form consistent
with Egs. (1) and(17),

Figure 3 depicts the scaling plot bfx,t)/[ C,+ In(Int)] as
a function ofx/In’ for t=10° (dashed line and circlesind
t=10" (solid line and squargsThe two curves match each
X other remarkably well. A corresponding scaling plot for the
|(X,t)“[C|+|n(|nt)]G(m) : (19  mean concentrations,(x,t) andcg(x,t) of particlesA and
B, respectively, is shown in Fig. 4. These two plots confirm

Here C, may be interpreted as the integration constant, bufh€ validity of the scaling ansatz fdR(x,t), ca(x,t), and
actually we introduced it to compensate for our arbitraryCB(X;t)- o

choice of the base of the logarithm functions used in Eq, Finally, in Fig. 5 we present a log-log plot of three quan-
(19). To estimate its value we fittd@0t)C, +In(Int) to our  tties: (las(t)), W(t), and the second moment oh(t),
simulation data for the cumulative number of reactions at thd"2(t)=v(m*(t)), as functions of logi. The mean slopes of
origin of the system. Using the data for 107 we found that ~ these curves, calculated for-10°, are 2.2, 2.2, and 2.1,
the best fit corresponds @~ —0.62, which is the value we respectively. Taking into account a very slow convergence of
shall use henceforth. In Fig. 2 we present the plot ofthe Sinai mo_del to |t§ asyr_nptotlc time limit and a p053|ble
1(0)/[C,+In(Int)] as a function of time. This function turns €ffect of atypical conflgurat|gr[$25], the agreement with our
out to be constant to a good approximationtiorl(®, i.e., in  conjecture(17) that w(t)=Int is remarkably good. Simi-
the region where we expect the asymptotic Sinai behavjor larly, these data suggest thdjg(t)) and(m?(t)) are also

to be valid. asymptotically proportional to
0.75 . . . 10°
e-ot=10°
2 050 g
E] g
E S
5 = 10 b
= £
Z 025 =
v I vicd — <l (>
- w(t)
- my()
0.00 G-ap-Le =T = e = 100 5 X
-1. -0.5 0.0 0.5 1.0 10 10
2
x/In"(t) log,,(t)
FIG. 3. Scaling plot ofl (x,t)/[C,+In(Int)] as a function of
x/In?t for t=10° (dashed line and circlggndt= 10" (solid line and FIG. 5. The log-log plot of 1 og(t)) (solid), w(t) (circles, and

squarey with C,=—0.62. m,(t)=(m?(t)) (dashedl as functions of logi.
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IV. DISCUSSION AND CONCLUSIONS TABLE I. Asymptotic properties of the rms displacement of a
. . . single particle diffusing in a given mediun]ﬁx2 t)), the width of
In P”re'y diffusive syStems’_ R=0) the _spatlotemporal thegreaFc):tion frontv(t) ig A+ B{O systems, anfj )tﬁe mean nearest-
evolution of concentration profiles, andcg is governed by neighbor distancél (1)) in the trapping problem for three differ-
a single characteristic length, the rms displacement of nongnt types of disorder in one dimension. The data idt) and
interacting particles/(xz(t)). In reaction-diffusion systems /[(x%(t)) come from[13] (homogeneous mediunand[9] (random
(R>0) this property holds only for the regions lying far waiting times. The data foKl,,{t)) are from[29,32. The param-
from the reaction interface; these two areas are dominated hater v is the disorder strength of Rg®].
a single species/ or B) so thatR is negligibly small there.
However, the reaction plays a crucial role inside the reactio.ength No disorder Random waiting times  Sinai disorder
zone and its typical effect is to significantly decrease the ———
width of the inBt/eprfaciaI layer, so th%t the d))//namics of the OC(D) 1,4t1/2 12 tvl;/((ll:;:) Init
interface is governed by a new characteristic lengtt) V(! t (llr/':) t 11 In2t
measuring the width of the reaction front. Consequently, thé!vat) t /sy It
concentration profiles,(x,t) andcg(x,t) assumedifferent
scaling formsoutside and inside the reaction zone. These
findings were confirmed both in homogenedud,27,33
and some randor®] media. A surprising conclusion emerg-
ing from our present study is that Sinai disorder is so stron
that the reaction has practically no impact on the interfac
and the entire system is governed bgiagle characteristic
length scale \/<x2(t) xIn’. Consequently,c,, cg, and
R(x,t) asymptotically assume the scaling forms

other through inequality13). In addition to controlling the
asymptotic properties of the concentration profiles, these two
characteristic length scales govern, via E§s.and(11), the
%ng—time behavior of two other important quantities: the
eheight of the reaction fron(t) and the total reaction rate
R(t). Our analysis shows also the relevance of the third char-
acteristic lengti(l,{(t)), which constitutes the lower bound
for w(t), but is easier to investigate.

Ca(X, 1) SA(x/IN2L) In Table | we compare these three major characteristic
lengths, related to essentially different properties of the me-
Ca(X,t) % S(x/Int) dium, for various types of disorder in one dimension. The
data confirm our conjecturg43) and(15). Note that, except
R(x,t) o (tInt) ~1Sx(x/Int) (20 for a small logarithmic correction ta(t) in a translationally

invariant space, the asymptotic formsw(t) and (ly.4t))

valid for any x This phenomenon can be clearly appreciatecurn out to be the same. It was recently sugge$8ai that
in Figs. 3 and 4, where the scaling encompasses regions Iyt, . (t)) is asymptotically proportional to the rms displace-
ing both inside and outside the reaction zone whose width isnent of particles in systems with hard-core interactions
.approximat.ely equal to 0.3ih Note also that the above scal- (x*(t))uc. We thus conclude that bOtWtrap(")) and
ing forms imply that the mean local reaction ra®éx,t) (x%(t))c serve as very good approximations wft) in
cannot be expressed as a functionog{x,t) andcg(x,t)  one dimension. We also suggest that reaction-diffusion sys-
only, a clear indication that the reaction front under Sinaitems with initially separated reactants are characterized by a
disorder cannot be investigated by mean-field methods.  single length scale only in su¢handom media in which the

Slow reactions are known to modify the short-time behav{eading asymptotic behavior of the rms displacement with or
ior of reaction-diffusion systems, but in the long-time limit without hard-core interactions is the same, which is the case
their effect on the reaction front is similar to that of fast jn Sinai disordef32,36].
reactions[34,35. Therefore, although this study pertains
only to fast(instantaneoysreactions, we expect our main ACKNOWLEDGMENTS
(asymptotig¢ results to be valid for slow reactions too.

The rms displacement of noninteracting particles Z.K. acknowledges support by Bar-llan University and
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