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Reaction-diffusion front in a system with strong quenched disorder

Zbigniew Koza1,2 and Haim Taitelbaum1
1Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

2Institute of Theoretical Physics, University of Wrocław, 50-204 Wrocław, Poland
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Using the Sinai model, we study the effect imposed by strong quenched disorder on the dynamic properties
of the reaction front formed inA1B→C reaction-diffusion systems with initially separated reactants. We
confirm that the general scaling ansatz is valid also for disordered systems and find that a single characteristic
length controls the asymptotic properties of the entire system. We compare our results with those obtained for
different types of disorder as well as with results derived for a translationally invariant space.
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I. INTRODUCTION

It is by now well established that kinetics of diffusion
limited reactions in random and/or confined geometries
qualitatively different from that observed in a homogeneo
three-dimensional space@1#. The singular properties of suc
systems arise most often from the absence of a mecha
that would enable thorough~local! mixing of the reactants
There can be many physical reasons for inefficiency of
mixing, e.g., the absence of convective stirring in or on so
viscous or porous media@1#, concentration fluctuations in th
initial condition in homogeneous low-dimensional spac
@2–5#, or anomalous transport properties in disordered me
@1,6–9#, but its most significant consequence is that the lo
reaction rate is not proportional to the product of the me
local concentrations of the reactants, which renders the c
monly used mean-field approximation generally inapprop
ate for such systems.

There are many examples of chemical and biologi
diffusion-controlled reactions as well as many ‘‘nonchem
cal’’ processes resembling them, e.g., exciton-excit
defect-defect, soliton-antisoliton and electron-hole recom
nations. In many cases the reactants are initially separ
and as time goes on, owing to diffusion, they start to mix a
react. However, the theoretical and the experimental rese
in this field have concentrated mainly on translationally
variant spaces@10–21#, a condition that in reality is often
violated.

The asymptotic properties of theA1B→C reaction front
in homogeneous media attracted much interest in the
decade. It was found that ifA’s and B’s initially occupy
opposite sides of thex50 plane, the mean local reaction ra
R(x,t) asymptotically assumes, at locationx and timet, the
scaling form@11,12#

R~x,t !5h~ t !SRS x2xf~ t !

w~ t ! D , ~1!

wherexf(t)}t1/2 is the point at whichR attains its maximal
value and the widthw and heighth of the reaction front take
on simple forms

w~ t !}ta, h~ t !}t2b, ~2!
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2. Although it was later suggeste
@13,14# that the simple power-law dependence in Eq.~2!
should be modified, for space dimensionsd<2, by logarith-
mic factors, the exponenta remains the basic quantity de
scribing the reaction front at long times. Ford>2 it was
found thata51/6 if bothA’s andB’s are mobile@15,16# and
a50 if one of the diffusion constants vanishes@17,18#. In
one-dimensional systems the properties of the reaction f
turned out to be dominated by fluctuations tending to
crease its width, and most researchers agree that becau
thema takes on a value 1/4@13–16,19,20#.

The influence of quenched local disorder on the react
interface was recently studied by Araujo@9#, who considered
random walks on ad-dimensional lattice (d51,2,3). The
quenched disorder was modeled by assigning to each la
site j a random disorder variable 0,t j,1 taken from a
power-law distributionp(t j )5nt j

n21 , with disorder strength
0,n,1 fixed for the whole lattice; the set$t j% modifies the
jump rates of the random walkers by requiring that the me
time spent by them at sitej before leaving it for one of its
nearest neighbors is proportional to 1/t j . That study con-
firmed the validity of Eqs.~1! and ~2! with a5n/(113n)
for d51 anda5n/6 for d>2 andb related toa through

b5a1121/dw , ~3!

where@6#

dw5H ~11n!/n, d,2

2/n, d>2
~4!

is the anomalous diffusion exponent related to the sca
properties of the mean-square displacement of noninterac
particles diffusing in this system̂x2&;t2/dw.

In this paper we investigate the properties of react
fronts under the so-called Sinai disorder@22#, which has
been suggested as being relevant to various physical
nomena, e.g., dynamics of dislocations in doped cryst
slow dynamics of random-field magnets@23#, 1/f noise@24#,
transport in amorphous or porous media@25#, and charge
separation in photosynthetic systems@26#. In the Sinai model
one considers a one-dimensional lattice in which to each
its sites a local bias field21,Ej,1 is assigned. The se
6387 © 1997 The American Physical Society
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6388 56ZBIGNIEW KOZA AND HAIM TAITELBAUM
$Ej% consists of independent random variables drawn fro
given probability distributionr(E). The two jump probabili-
ties at sitej , Pj

1 , that a random walker will hop fromj to
j 11, andPj

2512Pj
1 that it will jump to j 21, are related

to Ej by

Pj
15 1

2 ~11Ej !, Pj
25 1

2 ~12Ej !. ~5!

The motion of a random walker in such a medium cor
sponds to diffusion in the presence of a potential field

Vj5 (
k5 j min

j

ln~Pk
1/Pk

2!, ~6!

where j min is the first node of a finite lattice~for infinite
systems this definition requires suitable rescaling to av
divergent sums!. This potential, being a sum of random va
ables, can be regarded as performing a random walk it
Sinai @22# proved rigorously that if̂ ln(Pj

1/Pj
2)&50 ~which

means that there is no global bias in the system! and if
0,^ ln2(Pj

1/Pj
2)&,`, then the mean-square displacement

a random walker grows extremely slowly

^x2~ t !&} ln4t. ~7!

This remarkable result is caused by stretches of bias with
same direction that tend to confine the particles inside po
tial wells.

The aim of our study is to examine the impact of this ty
of quenched local disorder on the asymptotic, long-ti
properties of the reaction front formed in theA1B→C
reaction-diffusion system with initially separated reactan
In addition to the Sinai type of disorder, we will assume th
the initial concentrations ofA’s andB’s are the same, thei
jumping rates depend on the same set of local bias varia
$Ej%, and that upon collision of unlike particles a reaction
certain to occur. We shall focus our attention on avera
over disorder realizations:xf(t), w(t), h(t), andR(x,t). In
particular, we confirm the validity of the general scaling a
satz~1! with w(t)} ln2t, h(t)}(t lnt)21, and the total reaction
rateR(t)[*R(x,t)dx} lnt/t. The Sinai disorder turns out t
be so strong that the reaction has practically no impact on
interface and the asymptotic properties of the local reac
rate and concentration profiles ofA’s andB’s are governed
by a single characteristic length scaleA^x2(t)&} ln2t both
inside and outside the reaction zone.

II. ANALYSIS

Since we assume that the mechanical properties ofA’s
andB’s are the same and the initial condition is symmet
with respect tox50, the mean position of the reaction fro
center does not change in time

xf~ t !50. ~8!

The mean total reaction rateR(t) is equal todI(t)/dt,
whereI (t) is the mean cumulative number of reactions th
have occurred by timet. This in turn is proportional to the
typical distance traveled by particles during timet, i.e., to
A^x2&. Thus, asymptotically,
a
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R~ t !5
dI~ t !

dt
}

dA^x2&
dt

. ~9!

Taking into account Eq.~7!, we thus find that

I ~ t !} ln2t, R~ t !}
lnt

t
. ~10!

Assuming the validity of the scaling ansatz~1!,
R(t)5*R(x,t)dx should be proportional to the product o
the width and height of the reaction front. Using Eq.~10!, we
thus conclude that

w~ t !h~ t !}R~ t !}
lnt

t
. ~11!

The width of the reaction front is usually defined as t
second moment of the local reaction rate@11#

w2~ t !5

E
2`

`

x2R~x,t !dx

E
2`

`

R~x,t !dx

, ~12!

which is consistent with the scaling ansatz~1! ~see Ref.@27#
for thorough discussion of this topic!. This quantity is
bounded from above by the rms displacement of a nonin
acting random walker, i.e., by the quantity expected to be
measure of the width of the interfacial region betweenA’s
and B’s in the absence of reaction. Indeed, comparing t
similar systems, one with and the other without a reacti
we can see that the reaction can only decrease the widt
the interfacial layer. This stems from the fact that the furth
a particle diffuses into the region initially occupied by th
unlike species, the greater probability that it meets a part
of the ‘‘opposite’’ type and reacts. Such a decrease in
width of the interface due to a reaction was observed
homogeneous media, wherea was found to be less than12, in
the study of disordered system by Araujo@9#, and in a one-
dimensional reaction-diffusion system with Le´vy flights @10#.
We thus arrive at a general inequality

w~ t !<A^x2&, ~13!

which, due to Eq.~7!, in the case of Sinai systems asym
totically takes on a form

w~ t !<C0ln2t, ~14!

whereC0.0 is a constant.
Since we assume that upon collision of unlike particle

reaction is certain to occur, in our model particlesA andB
remain separatedfor all times. The reaction front in such a
system is conveniently analyzed with a help of two quantit
@21#: the distance between the closest particlesA and B,
l AB(t), and the location of the midpoint~‘‘center of mass’’!
between these particlesm(t). Whenever there is a reaction i
the system,l AB50 and its location is given bym. These two
quantities describe properties of aparticular realization of
the system and should be carefully distinguished from
quantities employed in the scaling ansatz~1!, the latter rep-
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56 6389REACTION-DIFFUSION FRONT IN A SYSTEM WITH . . .
resenting averages over the entireensembleof different bias
fields $Ej% and different thermal histories of diffusing pa
ticles.

To find the lower bound forw(t) let us for a moment
assume that we monitor only those reactions that occur
mediately after a previous reaction happened at the origi
the systemx50. Let w* (t) denote the width of the reactio
front computed for such reactions and letl AB* (t) denote the
closestA-B distance calculated just after a pairA-B has re-
acted atx50. If a reaction has just occurred atx50, the
next collision ofA andB will most likely take place some
where between the current locations of the rightmostA and
leftmost B particles. Therefore,w* (t)}^ l AB* (t)&. However,
if we choose to monitor all reactions, we shall find th
hardly ever do they follow a reaction precisely atx50 sim-
ply because the reaction front is relatively broad. The lo
tion of the midpointm(t) fluctuates around its mean value
and this random wandering can only increase the width
the reaction front as compared to our reference system w
a reaction is taken into account only after a pairA-B collides
at x50. Therefore we expect thatw(t)>w* (t). Notice now
that ^ l AB* (t)&}^ l trap(t)&, wherel trap is a quantity extensively
studied in the so-called trapping problem@28,29#: A perfect
immobile trap is sitting atx50 and a swarm of diffusing
particles, initially uniformly, occupies the whole system. T
length ^ l trap(t)& is defined as the average distance betw
the trap and the closest particle at timet and, following our
analysis, satisfiesw(t)>w* (t)}^ l AB* (t)&}^ l trap(t)& and
therefore constitutes the lower bound forw(t),

w~ t !>C1^ l trap~ t !&, ~15!

with C1.0 being another constant. The properties
^ l trap(t)& were already studied for several models, includi
homogeneous systems@29–31#, the Sinai model@32#, and
the random waiting time disorder@32#. It was rigorously
proven @29# that in the absence of disorder^ l trap(t)&}t1/4,
which is in accordance with Eq.~15!. The ^ l trap(t)& distance
in the Sinai model was found to read

^ l trap~ t !&} ln2t. ~16!

It now follows from Eqs.~11!–~16! that asymptotically

w~ t !} ln2t, h~ t !}~ t lnt !21, ~17!

which, together with Eq.~10!, constitutes the main result o
this section.

III. NUMERICAL SIMULATIONS

To support our conjecture we have performed extens
numerical simulations. We used a one-dimensional lat
with L5801 sites, initially putting particlesA ~andB) to the
left ~right! of its center with concentrationa05b051.0. For
simplicity we chose as the distribution of the local bias va
ablesEj ,

r~Ej !5 1
2 @d~Ej2E!1d~Ej1E!#, E53/4. ~18!

This choice corresponds to a binomial distributi
Prob(Pj

157/8)5Prob(Pj
151/8)51/2. Particles of the sam
-
of

t

-

f
re

n

f
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-

type do not interact among themselves. When two unl
particles collide, they react and are replaced by aC. Particles
C, or the reaction products, are immobile, chemically ine
and do not interact in any way withA’s andB’s. There is no
exclusion principle. Taking into account large fluctuatio
and slow convergence of the Sinai model to the long-ti
limit, we averaged the results of our simulations ov
N513 000 configurations of the bias field$Ej% and for maxi-
mal timestmax5107 steps per particle.

In Fig. 1~a! we present a plot of the Sinai potential~6! for
a typical realization of the local bias fiel
$E(x)%,x52400, . . .,400. The corresponding concentr
tions of particlesA and B at times t5106 and t5107 are
depicted in Figs. 1~b! and 1~c!, respectively. In this particula
case particlesA(B) were found to the left~right! of
m(t)532 for t5106 andm(t)543 for t5107, and the dis-
tance between the closestA and B was equal to
l AB(106)5131 andl AB(107)5152, respectively. We can se
in these figures the main properties of the Sinai model. M
of the particles are being captured at the bottom of poten
wells, with very small probability to get out of them, a ph
nomenon leading to the extremely slow transport throu
such a medium. As time goes on, the particles eventu
manage to escape from shallow wells and are get
‘‘trapped’’ by a few particularly deep potential minima tha
dominate the long-time properties of the system@7,25#. Con-
sequently, very few reactions are being recorded durin
single simulation~on average we observed only 48 reactio
per a single run of 107 steps!. It is also clear that the behavio
of the Sinai system isverysensitive to the particular realiza
tion of the local field$Ej%, and the results of simulations ar
very ‘‘noisy.’’ Therefore, a large number of runs is require
before reasonably good averages can be obtained.

Because of the extremely slow reaction rate, direct ver
cation of the scaling ansatz~1! is practically impossible. In-

FIG. 1. ~a! Sinai potentialV(x) for a typical realization of the
bias field $E(x)%; ~b! the corresponding concentration profile
cA(x,t) and cB(x,t) of A and B, respectively, att5106; ~c! the
same as in~b! but for t5107. The vertical dashed lines represent t
midpointm(t) separatingA from B; m(106)532 andm(107)543.
The distances between the closestA andB are l AB(106)5131 and
l AB(107)5152.
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6390 56ZBIGNIEW KOZA AND HAIM TAITELBAUM
stead, we have checked whether the cumulative numbe
reactions that have occurred atx by time t,
I (x,t)5*0

t R(x,t)dt, takes on the scaling form consiste
with Eqs.~1! and ~17!,

I ~x,t !}@CI1 ln~ lnt !#GS x

ln2t D . ~19!

Here CI may be interpreted as the integration constant,
actually we introduced it to compensate for our arbitra
choice of the base of the logarithm functions used in E
~19!. To estimate its value we fittedI (0,t)}CI1 ln(lnt) to our
simulation data for the cumulative number of reactions at
origin of the system. Using the data fort>102 we found that
the best fit corresponds toCI'20.62, which is the value we
shall use henceforth. In Fig. 2 we present the plot
I (0,t)/@CI1 ln(lnt)# as a function of time. This function turn
out to be constant to a good approximation fort.103, i.e., in
the region where we expect the asymptotic Sinai behavior~7!
to be valid.

FIG. 2. I (0,t)/@CI1 ln(lnt)# as a function of timet, with
CI520.62.

FIG. 3. Scaling plot ofI (x,t)/@CI1 ln(lnt)# as a function of
x/ ln2t for t5106 ~dashed line and circles! andt5107 ~solid line and
squares!, with CI520.62.
of

t

.

e

f

Figure 3 depicts the scaling plot ofI (x,t)/@CI1 ln(lnt)# as
a function ofx/ ln2t for t5106 ~dashed line and circles! and
t5107 ~solid line and squares!. The two curves match eac
other remarkably well. A corresponding scaling plot for t
mean concentrationscA(x,t) andcB(x,t) of particlesA and
B, respectively, is shown in Fig. 4. These two plots confi
the validity of the scaling ansatz forR(x,t), cA(x,t), and
cB(x,t).

Finally, in Fig. 5 we present a log-log plot of three qua
tities: ^ l AB(t)&, w(t), and the second moment ofm(t),
m2(t)[A^m2(t)&, as functions of log10t. The mean slopes o
these curves, calculated fort.103, are 2.2, 2.2, and 2.1
respectively. Taking into account a very slow convergence
the Sinai model to its asymptotic time limit and a possib
effect of atypical configurations@25#, the agreement with ou
conjecture~17! that w(t)} ln2t is remarkably good. Simi-
larly, these data suggest that^ l AB(t)& andA^m2(t)& are also
asymptotically proportional to ln2t.

FIG. 4. ConcentrationscA ~circles! andcB ~squares! of A andB,
respectively, as functions of the scaling variablex/ ln2t for t5106

~empty symbols! and t5107 ~filled symbols!.

FIG. 5. The log-log plot of̂ l AB(t)& ~solid!, w(t) ~circles!, and
m2(t)[A^m2(t)& ~dashed! as functions of log10t.
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IV. DISCUSSION AND CONCLUSIONS

In purely diffusive systems (R50) the spatiotempora
evolution of concentration profilescA andcB is governed by
a single characteristic length, the rms displacement of n
interacting particlesA^x2(t)&. In reaction-diffusion systems
(R.0) this property holds only for the regions lying fa
from the reaction interface; these two areas are dominate
a single species (A or B) so thatR is negligibly small there.
However, the reaction plays a crucial role inside the reac
zone and its typical effect is to significantly decrease
width of the interfacial layer, so that the dynamics of t
interface is governed by a new characteristic lengthw(t)
measuring the width of the reaction front. Consequently,
concentration profilescA(x,t) and cB(x,t) assumedifferent
scaling formsoutsideand inside the reaction zone. Thes
findings were confirmed both in homogeneous@11,27,33#
and some random@9# media. A surprising conclusion emerg
ing from our present study is that Sinai disorder is so stro
that the reaction has practically no impact on the interf
and the entire system is governed by asingle characteristic
length scaleA^x2(t)&} ln2t. Consequently,cA , cB , and
R(x,t) asymptotically assume the scaling forms

cA~x,t !}SA~x/ ln2t ! ,

cB~x,t !}SB~x/ ln2t ! ,

R~x,t !}~ t lnt !21SR~x/ ln2t ! , ~20!

valid for any x. This phenomenon can be clearly apprecia
in Figs. 3 and 4, where the scaling encompasses region
ing both inside and outside the reaction zone whose widt
approximately equal to 0.3ln2t. Note also that the above sca
ing forms imply that the mean local reaction rateR(x,t)
cannot be expressed as a function ofcA(x,t) and cB(x,t)
only, a clear indication that the reaction front under Sin
disorder cannot be investigated by mean-field methods.

Slow reactions are known to modify the short-time beh
ior of reaction-diffusion systems, but in the long-time lim
their effect on the reaction front is similar to that of fa
reactions @34,35#. Therefore, although this study pertain
only to fast ~instantaneous! reactions, we expect our mai
~asymptotic! results to be valid for slow reactions too.

The rms displacement of noninteracting partic
A^x2(t)& and the reaction widthw(t) are related to each
s

n-

by

n
e

e

g
e

d
ly-
is

i

-

other through inequality~13!. In addition to controlling the
asymptotic properties of the concentration profiles, these
characteristic length scales govern, via Eqs.~9! and~11!, the
long-time behavior of two other important quantities: t
height of the reaction fronth(t) and the total reaction rate
R(t). Our analysis shows also the relevance of the third ch
acteristic lengtĥ l trap(t)&, which constitutes the lower boun
for w(t), but is easier to investigate.

In Table I we compare these three major characteri
lengths, related to essentially different properties of the m
dium, for various types of disorder in one dimension. T
data confirm our conjectures~13! and~15!. Note that, except
for a small logarithmic correction tow(t) in a translationally
invariant space, the asymptotic forms ofw(t) and ^ l trap(t)&
turn out to be the same. It was recently suggested@32# that
^ l trap(t)& is asymptotically proportional to the rms displac
ment of particles in systems with hard-core interactio
A^x2(t)&HC. We thus conclude that botĥl trap(t)& and
A^x2(t)&HC serve as very good approximations ofw(t) in
one dimension. We also suggest that reaction-diffusion s
tems with initially separated reactants are characterized b
single length scale only in such~random! media in which the
leading asymptotic behavior of the rms displacement with
without hard-core interactions is the same, which is the c
in Sinai disorder@32,36#.
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TABLE I. Asymptotic properties of the rms displacement of
single particle diffusing in a given mediumA^x2(t)&, the width of
the reaction frontw(t) in A1B→0 systems, and the mean neare
neighbor distancêl trap(t)& in the trapping problem for three differ
ent types of disorder in one dimension. The data forw(t) and
A^x2(t)& come from@13# ~homogeneous medium! and@9# ~random
waiting times!. The data for̂ l trap(t)& are from@29,32#. The param-
etern is the disorder strength of Ref.@9#.

Length No disorder Random waiting times Sinai disord

A^x2(t)& t1/2 tn/(11n) ln2t
w(t) t1/4(lnt)1/2 tn/(113n) ln2t

^ l trap(t)& t1/4 tn/(113n) ln2t
.
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